首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Robust Sparse Representation-Based Classification Using Online Sensor Data for Monitoring Manual Material Handling Tasks
【24h】

Robust Sparse Representation-Based Classification Using Online Sensor Data for Monitoring Manual Material Handling Tasks

机译:使用在线传感器数据进行鲁棒的基于稀疏表示的分类,以监控手动物料处理任务

获取原文
获取原文并翻译 | 示例

摘要

Sensor-based online process monitoring has extensive applications, such as in manufacturing and service industries. In real environments, though, sensor data are often contaminated with noise, leading to severe challenges in accurate data analysis. In the existing literature, noise is generally modeled as Gaussian to analyze sensor data for various applications, for example in fault detection and diagnostics. However, in some applications, such as due to challenging field conditions, sensor data may be disturbed by high levels of outliers such that the Gaussian assumption of sensor noise is inadequate, thus leading to large estimation errors. This paper focuses on online classification applications. A robust sparse representation classification method is proposed, which considers non-Gaussian noise, and thus can effectively analyze sensor data with higher levels of outliers. Case studies were completed, based on both numerically simulated sensor data and actual wearable sensor data from occupational manual material handling process monitoring. The proposed classification method could effectively analyze sensor data with non-Gaussian noise, and outperformed commonly used methods in the literature. Thus, this new method may be advantageous for solving classification problems in challenging field conditions, to address the difficulties of high levels of sensor outliers. Note to Practitioners - This paper proposes a fast, robust classification method for online sensor data classification. The proposed method is designed to cope with high levels of sensor outliers. The robustness of the method and its computational efficiency make it particularly appealing for online sensor data classification in challenging field conditions in which the presence of sensor outliers causes practical difficulties for most existing classification algorithms.
机译:基于传感器的在线过程监控具有广泛的应用,例如在制造业和服务业。但是,在实际环境中,传感器数据通常会被噪声污染,从而导致在精确数据分析中面临严峻挑战。在现有文献中,通常将噪声建模为高斯模型,以分析传感器数据以用于各种应用程序,例如在故障检测和诊断中。但是,在某些应用中,例如由于挑战性的野外条件,传感器数据可能会被高水平的异常值所干扰,从而使传感器噪声的高斯假设不足,从而导致较大的估计误差。本文重点介绍在线分类应用程序。提出了一种鲁棒的稀疏表示分类方法,该方法考虑了非高斯噪声,可以有效地分析离群值较高的传感器数据。基于数值模拟传感器数据和来自职业人工物料搬运过程监控的实际可穿戴传感器数据,案例研究已经完成。提出的分类方法可以有效地分析具有非高斯噪声的传感器数据,并且优于文献中常用的方法。因此,该新方法对于解决具有挑战性的野外条件下的分类问题,以解决高水平的传感器离群值的困难可能是有利的。执业者注意事项-本文提出了一种快速,可靠的在线传感器数据分类方法。所提出的方法旨在应对高水平的传感器异常值。该方法的鲁棒性及其计算效率使其特别适合具有挑战性的现场条件下的在线传感器数据分类,在这些条件下,传感器异常值的存在对大多数现有分类算法造成了实际困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号