首页> 外文期刊>Automatic Documentation and Mathematical Linguistics >The Transition from A Priori to A Posteriori Information: Bayesian Procedures in Distributed Large-Scale Data Processing Systems
【24h】

The Transition from A Priori to A Posteriori Information: Bayesian Procedures in Distributed Large-Scale Data Processing Systems

机译:从先验信息到后验信息的转变:分布式大型数据处理系统中的贝叶斯程序

获取原文
获取原文并翻译 | 示例

摘要

The procedure of transition from a priori to a posteriori information for a linear experiment in the context of Big Data systems is considered. At first glance, this process is fundamentally sequential, namely: as a result of observation, a priori information is transformed into a posteriori information, which is later interpreted as a priori for the next observation, etc. It is shown that such a procedure can be parallelized and unified due to the transformation of both the measurement results and the original a priori information into some special type. The properties of various forms of information representation are studied and compared. This approach makes it possible to effectively scale the Bayesian estimation procedure and, thus, adapt it to the problems of processing large amounts of distributed data.
机译:考虑了在大数据系统的情况下从线性实验向先验信息过渡到后验信息的过程。乍一看,该过程从根本上讲是顺序的,即:作为观察的结果,先验信息被转换为后验信息,该信息随后被解释为下一次观察的先验信息,等等。表明这种过程可以由于将测量结果和原始先验信息都转换为某种特殊类型,因此可以并行化和统一化。研究和比较了各种形式的信息表示的属性。这种方法使得有效地缩放贝叶斯估计过程成为可能,从而使其适应于处理大量分布式数据的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号