首页> 外文期刊>IEEE Transactions on Automatic Control >Fast stability checking for the convex combination of stable polynomials
【24h】

Fast stability checking for the convex combination of stable polynomials

机译:稳定多项式凸组合的快速稳定性检查

获取原文
获取原文并翻译 | 示例

摘要

A fast algorithm is proposed for checking the stability of the edges of a polytope where most of the computations involved depend on the number of vertices rather than on the number of edges. This algorithm is based on the segment lemma derived by H. Chapellat et al. (1988). Although the segment lemma is an important result on its own, no explicit algorithm was given there. Some important properties of the lemma are revealed, and it is shown how they lead to a fast algorithm. In this algorithm, the major computations involved are those of solving for the positive real roots of two polynomials with degree less than or equal to n/2 for each vertex. The computations required by the algorithm are mainly vertex-dependent, and the burden of the combinatoric explosion of the number of edges is greatly reduced.
机译:提出了一种用于检查多边形边缘稳定性的快速算法,其中涉及的大多数计算取决于顶点数量而不是边缘数量。该算法基于H.Chapellat等人得出的分段引理。 (1988)。尽管片段引理本身是重要的结果,但那里没有给出明确的算法。揭示了引理的一些重要属性,并显示了引理如何导致快速算法。在该算法中,涉及的主要计算是求解每个顶点度数小于或等于n / 2的两个多项式的正实根的计算。该算法所需的计算主要依赖于顶点,并且大大减少了边缘数量的组合爆炸的负担。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号