首页> 外文期刊>IEEE Transactions on Automatic Control >Modified extended Kalman filtering and a real-time parallel algorithm for system parameter identification
【24h】

Modified extended Kalman filtering and a real-time parallel algorithm for system parameter identification

机译:改进的扩展卡尔曼滤波和实时并行算法用于系统参数识别

获取原文
获取原文并翻译 | 示例

摘要

A modification of the extended Kalman filter (EKF) algorithm, which is called MEKF for short, it introduced. The modification is achieved by an improved linearization procedure. For this purpose, a parallel computational scheme is recommended, and it has immediate applications to identifying unknown system parameters of time-varying, linear, stochastic state-space models in real time. It should be noted that just like the EKF, the MEKF is also ad hoc in the sense that it is a real-time approximation method. Numerical examples with computer simulation are included to demonstrate the effectiveness of this procedure as compared to the EKF algorithm.
机译:引入了对扩展卡尔曼滤波器(EKF)算法的一种改进,简称为MEKF。通过改进的线性化过程来实现修改。为此,推荐使用并行计算方案,该方案可立即应用于实时识别时变,线性,随机状态空间模型的未知系统参数。应该注意的是,就像EKF一样,MEKF在它是实时近似方法的意义上也是临时的。包括了带有计算机仿真的数值示例,以证明与EKF算法相比,该程序的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号