首页> 外文期刊>IEEE Transactions on Automatic Control >Robust stability analysis of polynomials with linearly dependent coefficient perturbations
【24h】

Robust stability analysis of polynomials with linearly dependent coefficient perturbations

机译:具有线性相关系数摄动的多项式的鲁棒稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

A computational tractable procedure for robust pole location analysis of uncertain linear time-invariant dynamical systems, whose characteristic polynomial coefficients depend linearly on parameter perturbations, is proposed. It is shown that, in the case of linearly dependent coefficient perturbations, the stability test with respect to any unconnected domain of the complex plane can be carried out, and the largest stability domain in parameter space can be computed by using only a quick test on a particular set of polynomials named vertex polynomials. The procedure requires only one sweeping function and simple geometrical considerations at each sweeping step. This leads to a very short execution time, as is shown in an example. A unification with Kharitonov's theory and edge theorem is also provided.
机译:提出了一种不确定的线性时不变动力系统鲁棒极点位置分析的计算难易过程,该系统的特征多项式系数与参数摄动线性相关。结果表明,在线性相关系数扰动的情况下,可以对复平面的任何未连接域进行稳定性测试,并且可以通过仅通过快速测试来计算参数空间中的最大稳定性域。一组特定的多项式,称为顶点多项式。该过程仅需要一个清扫功能,并且在每个清扫步骤都需要简单的几何考虑。如示例所示,这导致执行时间非常短。还提供了与哈里托诺夫理论和边定理的统一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号