首页> 外文期刊>IEEE Transactions on Automatic Control >A matrix pencil based numerical method for the computation of the GCD of polynomials
【24h】

A matrix pencil based numerical method for the computation of the GCD of polynomials

机译:基于矩阵铅笔的数值方法,用于多项式GCD的计算

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a new numerical method for the computation of the greatest common divisor (GCD) of an m-set of polynomials of R[s], P/sub m,d/, of maximal degree d. It is based on a previously proposed theoretical procedure (Karcanias, 1989) that characterizes the GCD of P/sub m,d/ as the output decoupling zero polynomial of a linear system S(A/spl circ/,C/spl circ/) that may be associated with P/sub m,d/. The computation of the GCD is thus reduced to finding the finite zeros of the pencil sW-AW, where W is the unobservable subspace of S(A/spl circ/,C/spl circ/). If k=dim W, the GCD is determined as any nonzero entry of the kth compound C/sub k/(sW-A/spl circ/W). The method defines the exact degree of GCD, works satisfactorily with any number of polynomials and evaluates successfully approximate solutions.
机译:本文提出了一种新的数值方法,用于计算最大度为d的R [s]的m个多项式的最大集合的最大公约数(GCD)。它基于先前提出的理论程序(Karcanias,1989),该程序将P / sub m,d /的GCD表征为线性系统S(A / spl circ /,C / spl circ /)的输出解耦零多项式。可能与P / sub m,d /相关联。因此,将GCD的计算简化为找到铅笔sW-AW的有限零点,其中W是S(A / spl circ /,C / spl circ /)的不可观察子空间。如果k = dim W,则将GCD确定为第k个化合物C / sub k /(sW-A / spl circ / W)的任何非零条目。该方法定义了GCD的精确度,可以满意地处理任意数量的多项式,并且可以成功评估近似解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号