首页> 外文期刊>IEEE Transactions on Automatic Control >Sensitivity integral relations and design trade-offs in linear multivariable feedback systems
【24h】

Sensitivity integral relations and design trade-offs in linear multivariable feedback systems

机译:线性多变量反馈系统中的灵敏度积分关系和设计折衷

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to develop integral relations regarding the singular values of the sensitivity function in linear multivariable feedback systems. The main utility of these integrals is that they can be used to quantify the fundamental limitations in feedback design which arise due to system characteristics such as open-loop unstable poles and nonminimum phase zeros and to such fundamental design requirements as stability and bandwidth constraints. We present extensions to both the classical Bode sensitivity integral relation and Poisson integral formula. These extended integral relations exhibit important insights toward trade-offs that must be performed between sensitivity reduction and sensitivity increase due to the aforementioned system characteristics and design constraints. Most importantly, these results display new phenomena concerning design limitations in multivariable systems which have no analog in single-input single-output systems.
机译:本文的目的是开发关于线性多变量反馈系统中灵敏度函数的奇异值的积分关系。这些积分的主要用途是,它们可用于量化由于系统特性(例如开环不稳定极点和非最小相位零)以及诸如稳定性和带宽约束之类的基本设计要求而引起的反馈设计中的基本限制。我们介绍了经典Bode灵敏度积分关系和Poisson积分公式的扩展。这些扩展的积分关系显示出重要的见解,这是由于上述系统特性和设计约束而必须在灵敏度降低和灵敏度提高之间进行权衡的原因。最重要的是,这些结果显示了有关多变量系统中设计限制的新现象,而多变量系统在单输入单输出系统中没有模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号