首页> 外文期刊>IEEE Transactions on Automatic Control >Further results on rational approximations of /spl Lscr//sup 1/ optimal controllers
【24h】

Further results on rational approximations of /spl Lscr//sup 1/ optimal controllers

机译:/ spl Lscr // sup 1 /最优控制器的有理逼近的进一步结果

获取原文
获取原文并翻译 | 示例

摘要

The continuous-time persistent disturbance rejection problem (/spl Lscr//sup 1/ optimal control) leads to nonrational compensators, even for SISO systems. The difficulty of physically implementing these controllers suggests that the most significant applications of the continuous time /spl Lscr//sup 1/ theory is to furnish bounds for the achievable performance of the plant. Previously, two different rational approximations of the optimal /spl Lscr//sup 1/ controller were developed by Ohta et al. (1992) and by Blanchini and Sznaier (1994). In this paper the authors explore the connections between these two approximations. The main result of the paper shows that both approximations belong to the same subset /spl Omega//sub T/ of the set of rational approximations, and that the method proposed by Blanchini and Sznaier gives the best approximation, in the sense of providing the tightest upper bound of the approximation error, among the elements of this subset. Additionally, the authors exploit the structure of the dual to the /spl Lscr//sup 1/ optimal control problem to obtain rational approximations with approximation error smaller than a prespecified bound.
机译:连续时间持续性干扰抑制问题(/ spl Lscr // sup 1 /最佳控制)甚至导致对于SISO系统的非理性补偿。物理上实现这些控制器的困难表明,连续时间/ spl Lscr // sup 1 /理论的最重要应用是为工厂可实现的性能提供界限。以前,Ohta等人开发了最优/ spl Lscr // sup 1 /控制器的两种不同的有理近似值。 (1992)以及Blanchini和Sznaier(1994)的著作。在本文中,作者探索了这两种近似之间的联系。本文的主要结果表明,两种近似都属于有理逼近集合的相同子集/ spl Omega // sub T /,并且Blanchini和Sznaier提出的方法在提供在此子集的元素中,逼近误差的最紧密上限。此外,作者利用对/ spl Lscr // sup 1 /最优控制问题的对偶结构来获得有理逼近,且逼近误差小于预定界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号