首页> 外文期刊>IEEE Transactions on Automatic Control >A general minimal residual Krylov subspace method for large-scalemodel reduction
【24h】

A general minimal residual Krylov subspace method for large-scalemodel reduction

机译:大规模模型约简的通用最小残差Krylov子空间方法

获取原文
获取原文并翻译 | 示例

摘要

This paper considers approximating a given nth-order stable transfer matrix G(s) by an rth-order stable transfer matrix Gr(s) in which n≫r, and where n is large. The Arnoldi process is used to generate a basis to a part of the controllability subspace associated with the realization of G(s), and a residual error is defined for any approximation in this subspace. We establish that minimizing the L∞ norm of this residual error over the set of stable approximations leads to a 2-block distance problem. Finally, the solution of this distance problem is used to construct reduced-order approximate models. The behavior of the algorithms is illustrated with a simple example
机译:本文考虑用n≥r且n大的r阶稳定传递矩阵Gr(s)近似给定的n阶稳定传递矩阵G(s)。 Arnoldi过程用于为与G(s)的实现相关的部分可控性子空间生成基础,并为该子空间中的任何近似值定义残差。我们确定,在稳定逼近集合上最小化此残留误差的L∞范数会导致2块距离问题。最后,该距离问题的解决方案用于构造降阶近似模型。用一个简单的例子说明算法的行为

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号