首页> 外文期刊>IEEE Transactions on Automatic Control >Model-free control of nonlinear stochastic systems with discrete-time measurements
【24h】

Model-free control of nonlinear stochastic systems with discrete-time measurements

机译:具有离散时间测量的非线性随机系统的无模型控制

获取原文
获取原文并翻译 | 示例

摘要

Consider the problem of developing a controller for general (nonlinear and stochastic) systems where the equations governing the system are unknown. Using discrete-time measurement, this paper presents an approach for estimating a controller without building or assuming a model for the system. Such an approach has potential advantages in accommodating complex systems with possibly time-varying dynamics. The controller is constructed through use of a function approximator, such as a neural network or polynomial. This paper considers the use of the simultaneous perturbation stochastic approximation algorithm which requires only system measurements. A convergence result for stochastic approximation algorithms with time-varying objective functions and feedback is established. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.
机译:考虑为控制系统方程的通用(非线性和随机)系统开发控制器的问题。本文使用离散时间测量,提出了一种无需构建或假设系统模型即可估算控制器的方法。这种方法在适应可能具有时变动态特性的复杂系统方面具有潜在的优势。通过使用函数逼近器(例如神经网络或多项式)构造控制器。本文考虑了仅需要系统测量的同时扰动随机逼近算法的使用。建立了具有时变目标函数和反馈的随机逼近算法的收敛结果。结果表明,与基于有限差分梯度逼近的标准随机逼近算法相比,该算法可以大大提高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号