首页> 外文期刊>IEEE Transactions on Automatic Control >Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach
【24h】

Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach

机译:存在非线性失真的线性系统的参数和非参数识别-频域方法

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the asymptotic behavior of nonparametric and parametric frequency domain identification methods to model linear dynamic systems in the presence of nonlinear distortions under some general conditions for random multisine excitations. In the first part, a related linear dynamic system (RLDS) approximation to the nonlinear system (NLS) is defined, and it is shown that the differences between the NLS and the RLDS can be modeled as stochastic variables with known properties. In the second part a parametric model for the RLDS is identified. Convergence in probability of this model to the RLDS is proven. A function of dependency is defined to detect and separate the presence of unmodeled dynamics and nonlinear distortions and to bound the bias error on the transfer function estimate.
机译:本文研究了在随机多正弦激励的一些一般条件下,在存在非线性失真的情况下对线性动态系统建模的非参数和参数频域识别方法的渐近行为。在第一部分中,定义了与非线性系统(NLS)有关的线性动力学系统(RLDS)近似值,并表明可以将NLS和RLDS之间的差异建模为具有已知属性的随机变量。在第二部分中,确定了RLDS的参数模型。证明了该模型与RLDS的收敛性。定义了一个依赖函数,以检测和分离未建模的动力学和非线性失真的存在,并在传递函数估计上限制偏差误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号