首页> 外文期刊>IEEE Transactions on Automatic Control >On stabilization of bilinear uncertain time-delay stochasticsystems with Markovian jumping parameters
【24h】

On stabilization of bilinear uncertain time-delay stochasticsystems with Markovian jumping parameters

机译:马氏跳跃参数双线性不确定时滞随机系统的镇定

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the stochastic stabilization problem for a class of bilinear continuous time-delay uncertain systems with Markovian jumping parameters. Specifically, the stochastic bilinear jump system under study involves unknown state time-delay, parameter uncertainties, and unknown nonlinear deterministic disturbances. The jumping parameters considered here form a continuous-time discrete-state homogeneous Markov process. The whole system may be regarded as a stochastic bilinear hybrid system that includes both time-evolving and event-driven mechanisms. Our attention is focused on the design of a robust state-feedback controller such that, for all admissible uncertainties as well as nonlinear disturbances, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are established to guarantee the existence of desired robust controllers, which are given in terms of the solutions to a set of either linear matrix inequalities (LMIs), or coupled quadratic matrix inequalities. The developed theory is illustrated by numerical simulation
机译:本文研究了一类具有马尔可夫跳跃参数的双线性连续时滞不确定系统的随机镇定问题。具体来说,正在研究的随机双线性跳跃系统涉及未知状态时延,参数不确定性和未知非线性确定性干扰。这里考虑的跳跃参数形成连​​续时间离散状态齐次马尔可夫过程。整个系统可以看作是一个随机双线性混合系统,它既包括时间演化机制又包括事件驱动机制。我们的注意力集中在鲁棒的状态反馈控制器的设计上,这样,对于所有允许的不确定性以及非线性干扰,闭环系统均方根随机地呈指数稳定,与时间延迟无关。建立足够的条件以保证存在所需的鲁棒控制器,这些条件是根据一组线性矩阵不等式(LMI)或耦合的二次矩阵不等式的解给出的。数值模拟说明了所发展的理论

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号