首页> 外文期刊>IEEE Transactions on Automatic Control >Pseudospectral methods for optimal motion planning of differentially flat systems
【24h】

Pseudospectral methods for optimal motion planning of differentially flat systems

机译:拟谱方法用于差分平面系统的最优运动规划

获取原文
获取原文并翻译 | 示例

摘要

The article presents some preliminary results on combining two new ideas from nonlinear control theory and dynamic optimization. We show that the computational framework facilitated by pseudospectral methods applies quite naturally and easily to Fliess' implicit state variable representation of dynamical systems. The optimal motion planning problem for differentially flat systems is equivalent to a classic Bolza problem of the calculus of variations. We exploit the notion that derivatives of flat outputs given in terms of Lagrange polynomials at Legendre-Gauss-Lobatto points can be quickly computed using pseudospectral differentiation matrices. Additionally, the Legendre pseudospectral method approximates integrals by Gauss-type quadrature rules. The application of this method to the two-dimensional crane model reveals how differential flatness may be readily exploited.
机译:本文介绍了将非线性控制理论和动态优化中的两种新思想相结合的初步结果。我们表明,伪谱方法所促进的计算框架非常自然且容易地应用于动态系统的Fliess隐式状态变量表示。差分平面系统的最佳运动计划问题等同于变化演算的经典Bolza问题。我们利用这样的概念,即可以使用伪谱微分矩阵快速计算在Legendre-Gauss-Lobatto点处根据Lagrange多项式给出的平面输出的导数。此外,Legendre伪谱方法通过高斯型正交规则逼近积分。这种方法在二维起重机模型上的应用揭示了如何可以容易地利用平整度差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号