首页> 外文期刊>IEEE Transactions on Automatic Control >Polynomially Parameter-Dependent Lyapunov Functions for Robust Stability of Polytopic Systems: An LMI Approach
【24h】

Polynomially Parameter-Dependent Lyapunov Functions for Robust Stability of Polytopic Systems: An LMI Approach

机译:用于多项式系统鲁棒稳定性的多项式参数相关的Lyapunov函数:一种LMI方法

获取原文
获取原文并翻译 | 示例

摘要

In this note, robust stability of state-space models with respect to real parametric uncertainty is considered. Specifically, a new class of parameter-dependent quadratic Lyapunov functions for establishing stability of a polytope of matrices is introduced, i.e., the homogeneous polynomially parameter-dependent quadratic Lyapunov functions (HPD-QLFs). The choice of this class, which contains parameter-dependent quadratic Lyapunov functions whose dependence on the uncertain parameters is expressed as a polynomial homogeneous form, is motivated by the property that a polytope of matrices is stable if and only there exists an HPD-QLF. The main result of the note is a sufficient condition for determining the sought HPD-QLF, which amounts to solving linear matrix inequalities (LMIs) derived via the complete square matricial representation (CSMR) of homogeneous matricial forms and the Lyapunov matrix equation. Numerical examples are provided to demonstrate the effectiveness of the proposed approach.
机译:在本说明中,考虑了状态空间模型相对于实际参数不确定性的鲁棒稳定性。具体地,介绍了用于建立矩阵的多面体的稳定性的一类新的参数相关的二次Lyapunov函数,即,均质多项式参数相关的二次Lyapunov函数(HPD-QLF)。此类的选择包含依赖于参数的二次Lyapunov函数,其对不确定参数的依赖关系表示为多项式齐次形式,其受以下属性的影响:如果并且仅存在HPD-QLF,则矩阵的多面体是稳定的。注释的主要结果是确定所需的HPD-QLF的充分条件,相当于求解通过齐次矩阵形式的完整平方矩阵表示(CSMR)和Lyapunov矩阵方程得出的线性矩阵不等式(LMI)。数值例子说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号