首页> 外文期刊>IEEE Transactions on Automatic Control >Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback
【24h】

Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback

机译:多项式矩阵不等式和静态输出反馈的收敛松弛

获取原文
获取原文并翻译 | 示例

摘要

Using a moment interpretation of recent results on sum-of-squares decompositions of nonnegative polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to solve nonconvex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower bounds that converges to the global optimum. Results from the theory of moments are used to detect whether the global optimum is reached at a given LMI relaxation, and if so, to extract global minimizers that satisfy the PMI. The approach is successfully applied to PMIs arising from static output feedback design problems.
机译:使用对非负多项式矩阵的平方和分解的最新结果的矩解释,我们提出了凸线性矩阵不等式(LMI)松弛的层次结构,以解决非凸多项式矩阵不等式(PMI)优化问题,包括双线性矩阵不等式(BMI) ) 问题。 LMI松弛的这种层次结构会生成一个下限的单调序列,该序列会收敛到全局最优值。矩理论的结果用于检测在给定的LMI松弛下是否达到了全局最优,如果是,则提取满足PMI的全局最小化器。该方法已成功应用于由静态输出反馈设计问题引起的PMI。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号