首页> 外文期刊>IEEE Transactions on Automatic Control >SDU: A Semidefinite Programming-Based Underestimation Method for Stochastic Global Optimization in Protein Docking
【24h】

SDU: A Semidefinite Programming-Based Underestimation Method for Stochastic Global Optimization in Protein Docking

机译:SDU:蛋白质对接中的随机全局优化的基于半定规划的低估方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new stochastic global optimization method targeting protein-protein docking problems, an important class of problems in computational structural biology. The method is based on finding general convex quadratic underestimators to the binding energy function that is funnel-like. Finding the optimum underestimator requires solving a semidefinite programming problem, hence the name semidefinite programming-based underestimation (SDU). The underestimator is used to bias sampling in the search region. It is established that under appropriate conditions SDU locates the global energy minimum with probability approaching one as the sample size grows. A detailed comparison of SDU with a related method of convex global underestimator (CGU), and computational results for protein-protein docking problems are provided
机译:本文介绍了一种新的针对蛋白质-蛋白质对接问题的随机全局优化方法,蛋白质对接问题是计算结构生物学中的一类重要问题。该方法基于找到类似于漏斗状的结合能函数的一般凸二次低估量。找到最优的低估器需要解决一个半定规划问题,因此命名为基于半定规划的低估(SDU)。低估器用于使搜索区域中的采样产生偏差。可以确定的是,在适当的条件下,随着样本量的增加,SDU定位的全局能量最小值具有接近于1的概率。详细介绍了SDU与相关的凸全局低估(CGU)方法的比较,并提供了蛋白质-蛋白质对接问题的计算结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号