首页> 外文期刊>IEEE Transactions on Automatic Control >Robustness of Accelerated First-Order Algorithms for Strongly Convex Optimization Problems
【24h】

Robustness of Accelerated First-Order Algorithms for Strongly Convex Optimization Problems

机译:加速一阶算法强大凸优化问题的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

We study the robustness of accelerated first-order algorithms to stochastic uncertainties in gradient evaluation. Specifically, for unconstrained, smooth, strongly convex optimization problems, we examine the mean-squared error in the optimization variable when the iterates are perturbed by additive white noise. This type of uncertainty may arise in situations where an approximation of the gradient is sought through measurements of a real system or in a distributed computation over a network. Even though the underlying dynamics of first-order algorithms for this class of problems are nonlinear, we establish upper bounds on the mean-squared deviation from the optimal solution that are tight up to constant factors. Our analysis quantifies fundamental tradeoffs between noise amplification and convergence rates obtained via any acceleration scheme similar to Nesterov's or heavy-ball methods. To gain additional analytical insight, for strongly convex quadratic problems, we explicitly evaluate the steady-state variance of the optimization variable in terms of the eigenvalues of the Hessian of the objective function. We demonstrate that the entire spectrum of the Hessian, rather than just the extreme eigenvalues, influences robustness of noisy algorithms. We specialize this result to the problem of distributed averaging over undirected networks and examine the role of network size and topology on the robustness of noisy accelerated algorithms.
机译:我们研究加速的一阶算法对梯度评估中随机不确定性的鲁棒性。具体而言,对于不受约束的,平滑,强凸的优化问题,当迭代被添加性白噪声扰乱时,我们检查优化变量中的平均平方误差。在寻求梯度的近似通过真实系统或通过网络的分布式计算中寻求梯度近似的情况下可能出现这种不确定性。即使这类问题的一阶算法的底层动态是非线性的,我们也是在与恒定因子紧固的最佳解决方案的平均偏差上建立上限。我们的分析量化了通过类似于Nesterov或重球方法获得的噪声放大和收敛速率之间的基本权衡。为了获得额外的分析洞察力,对于强烈凸的二次问题,我们明确评估了优化变量在客观函数的特征值方面的稳态方差。我们展示了Hessian的整个光谱,而不是极端的特征值,影响了嘈杂的算法的鲁棒性。我们专业化这一结果对未经向网络的分布平均问题,并检查网络大小和拓扑的作用对嘈杂加速算法的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号