首页> 外文期刊>IEEE Transactions on Automatic Control >Warm Start of Mixed-Integer Programs for Model Predictive Control of Hybrid Systems
【24h】

Warm Start of Mixed-Integer Programs for Model Predictive Control of Hybrid Systems

机译:用于混合系统模型预测控制的混合整数程序的热启动

获取原文
获取原文并翻译 | 示例

摘要

In hybrid model predictive control (MPC), a mixed-integer quadratic program (MIQP) is solved at each sampling time to compute the optimal control action. Although these optimizations are generally very demanding, in MPC, we expect consecutive problem instances to be nearly identical. This article addresses the question of how computations performed at one time step can be reused to accelerate (warm start) the solution of subsequent MIQPs. Reoptimization is not a rare practice in integer programming: for small variations of certain problem data, the branch-and-bound algorithm allows an efficient reuse of its search tree and the dual bounds of its leaf nodes. In this article, we extend these ideas to the receding-horizon settings of MPC. The warm-start algorithm we propose copes naturally with arbitrary model errors, has a negligible computational cost, and frequently enables an a priori pruning of most of the search space. Theoretical considerations and experimental evidence show that the proposed method tends to reduce the combinatorial complexity of the hybrid MPC problem to that of a one-step look-ahead optimization, greatly easing the online computation burden.
机译:在混合模型预测控制(MPC)中,在每个采样时间求解混合整数二次程序(MIQP)以计算最佳控制动作。虽然这些优化通常非常苛刻,但在MPC中,我们预计连续问题实例几乎相同。本文讨论了如何重复使用一次执行一次执行的计算的问题以加速(热启动)后续MIQP的解决方案。重新优化不是整数编程中的罕见实践:对于某些问题数据的小变化,分支和绑定算法允许有效地重用其搜索树和其叶节点的双限制。在本文中,我们将这些想法扩展到MPC的后退地平线设置。温暖启动算法我们提出自然地用任意模型错误,具有可忽略不计的计算成本,并且频繁地启用了大多数搜索空间的先验灌注。理论考虑和实验证据表明,该方法倾向于降低混合MPC问题的组合复杂性,以实现一步寻找优化,大大缓解在线计算负担。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号