首页> 外文期刊>Automatic Control, IEEE Transactions on >On the Performance of Optimal Input Signals for Frequency Response Estimation
【24h】

On the Performance of Optimal Input Signals for Frequency Response Estimation

机译:频率响应估计的最佳输入信号性能

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of minimum-variance excitation design for frequency response estimation based on finite impulse response (FIR) and output error (OE) models. The objective is to minimize the power of the input signal to be used in the system identification experiment subject to a model accuracy constraint. For FIR and OE models this leads to a finite dimensional semi-definite programming optimization problem. We study, in detail, how to apply this approach to the estimation of the frequency response at a given frequency, $omega $. The first case concerns minimizing the asymptotic variance of the estimated frequency response based on an FIR model estimate. We compare the optimal input signal with a sinusoidal signal with frequency $omega $ that gives the same model accuracy, and show that the input power can, at best, be reduced by a factor of two when using the optimal input signal. Conditions are given under which the sinusoidal signal is optimal, and it is shown that this is a common case for higher order FIR models. Next, we study FIR model based estimation of the absolute value and phase of the frequency response at a given frequency, $omega $. We derive the corresponding optimal input signals and compare their performances with that of a sinusoidal input signal with frequency $omega $. The relative reduction of input power when using the optimal solution is at best a factor of two. Finally, we discuss how to extend the FIR results to OE system identification by using an input parametrization proposed by Stoica and Söderström (1982).
机译:我们考虑基于有限冲激响应(FIR)和输出误差(OE)模型的频率响应估计的最小方差激励设计问题。目的是使受模型精度约束的系统识别实验中使用的输入信号的功率最小。对于FIR和OE模型,这会导致有限维半定规划优化问题。我们将详细研究如何将这种方法应用于给定频率$ omega $的频率响应估计。第一种情况涉及基于FIR模型估计来最小化估计频率响应的渐近方差。我们将最佳输入信号与具有相同模型精度的频率为$ omega $的正弦信号进行比较,并表明,使用最佳输入信号时,输入功率充其量最多只能降低两倍。给出了正弦信号最佳的条件,并表明这是高阶FIR模型的常见情况。接下来,我们研究在给定频率$ omega $下基于FIR模型的频率响应的绝对值和相位估计。我们导出相应的最佳输入信号,并将其性能与频率为ωomega的正弦输入信号进行比较。使用最佳解决方案时,输入功率的相对降低最多为两倍。最后,我们讨论如何使用Stoica和Söderström(1982)提出的输入参数化将FIR结果扩展到OE系统识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号