首页> 外文期刊>Automatic Control, IEEE Transactions on >Performance Analysis of Gradient-Based Nash Seeking Algorithms Under Quantization
【24h】

Performance Analysis of Gradient-Based Nash Seeking Algorithms Under Quantization

机译:量化下基于梯度的纳什寻优算法性能分析

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the impact of quantized inter-agent communications on the asymptotic and transient behavior of gradient-based Nash-seeking algorithms in non-cooperative games. Using the information-theoretic notion of entropy power, we establish a universal lower bound on the asymptotic rate of exponential mean-square convergence to the Nash equilibrium (NE). This bound depends on the inter-agent data rate and the local behavior of the agents' utility functions, and is independent of the quantizer structure. Next, we study transient performance and derive an upper bound on the average time required to settle inside a specified ball around the NE, under uniform quantization. Furthermore, we establish an upper bound on the probability that agents' actions lie outside this ball, and show that this bound decays double-exponentially with time. Finally, we propose an adaptive quantization scheme that allows the gradient algorithm to converge to the NE despite quantized inter-agent communications.
机译:本文研究了量化的智能体间通信对非合作博弈中基于梯度的Nash寻求算法的渐近和瞬态行为的影响。使用信息熵的信息理论概念,我们建立了指数均方收敛到纳什均衡(NE)的渐近速率的通用下界。此界限取决于代理之间的数据速率和代理效用功能的局部行为,并且独立于量化器结构。接下来,我们研究瞬态性能,并得出在均匀量化下稳定在NE附近的指定球内所需的平均时间的上限。此外,我们确定了代理人的动作位于该球之外的概率的上限,并表明该界限随时间呈双指数衰减。最后,我们提出了一种自适应量化方案,该方案尽管进行了量化的代理间通信,但仍允许梯度算法收敛到NE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号