首页> 外文期刊>IEEE Transactions on Automatic Control >Some New Results on Sample Path Optimality in Ergodic Control of Diffusions
【24h】

Some New Results on Sample Path Optimality in Ergodic Control of Diffusions

机译:扩散遍历控制中样本路径最优的一些新结果

获取原文
获取原文并翻译 | 示例

摘要

We present some new results on sample path optimality for the ergodic control problem of a class of nondegenerate diffusions controlled through the drift. The hypothesis most often used in the literature to ensure the existence of an almost sure sample path optimal stationary Markov control requires finite second moments of the first hitting times τ of bounded domains over all admissible controls. We show that this can be considerably weakened: E[τ] may be replaced with E[τ ln (τ)], thus reducing the required rate of convergence of averages from polynomial to logarithmic. A Foster-Lyapunov condition that guarantees this is also exhibited. Moreover, we study a large class of models that are neither uniformly stable nor have a near-monotone running cost, and we exhibit sufficient conditions for the existence of a sample path optimal stationary Markov control.
机译:对于通过漂移控制的一类非退化扩散的遍历控制问题,我们提出了关于样本路径最优性的一些新结果。在文献中最常用于确保存在几乎确定的样本路径的最优固定马尔可夫控制的假设要求,在所有允许的控制上,有限域的第一次命中时间τ的有限第二矩。我们表明,这可以大大削弱:E [τ]可以用E [τln(τ)]代替,从而降低了平均值从多项式到对数的收敛速度。还展示了保证这一点的Foster-Lyapunov条件。此外,我们研究了一类既不是一致稳定的也不是近单调运行成本的模型,并且我们展示了样本路径最优平稳马尔可夫控制的存在的充分条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号