首页> 外文期刊>IEEE Transactions on Automatic Control >Control Barrier Function Based Quadratic Programs for Safety Critical Systems
【24h】

Control Barrier Function Based Quadratic Programs for Safety Critical Systems

机译:用于安全关键系统的基于控制屏障函数的二次程序

获取原文
获取原文并翻译 | 示例

摘要

Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions—expressed as control barrier functions—to be unified with performance objectives—expressed as control Lyapunov functions—in the context of real-time optimization-based controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds.
机译:安全关键系统涉及潜在冲突的控制目标与安全约束之间的紧密耦合。作为创建用于控制这种形式的系统的正式框架的一种方法,并针对汽车应用,本文开发了一种方法,该方法可以将表示为控制屏障功能的安全条件与性能目标统一起来,如表示为控制Lyapunov功能-在基于实时优化的控制器中。安全条件是根据集合的前向不变性指定的,并通过对势垒函数的两种新颖概括进行验证。在每种情况下,满足Lyapunov式条件的障碍函数的存在意味着集合的前向不变性,并且表征了这两种障碍函数之间的关系。另外,这些公式中的每一个都产生控制障碍函数(CBF)的概念,在控制输入中提供不等式约束,当满足时,该约束又暗示该集合的前向不变性。通过这些构造,在二次程序(QP)的上下文中,CBF可以自然地与控制Lyapunov函数(CLF)集成在一起;这可以实现控制目标(由CLF表示),但要遵守系统允许状态(由CBF表示)的条件。通过QP进行的安全性和性能调节在自适应巡航控制和车道保持方面得到了证明,这两个汽车控制问题同时提出了安全性和性能方面的考虑以及执行机构的界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号