首页> 外文期刊>Automatic Control, IEEE Transactions on >A Novel a Priori State Computation Strategy for the Unscented Kalman Filter to Improve Computational Efficiency
【24h】

A Novel a Priori State Computation Strategy for the Unscented Kalman Filter to Improve Computational Efficiency

机译:一种新的无味卡尔曼滤波器的先验状态计算策略,以提高计算效率

获取原文
获取原文并翻译 | 示例

摘要

A priori state vector and error covariance computation for the Unscented Kalman Filter (UKF) is described. The original UKF propagates multiple sigma points to compute the a priori mean state vector and the error covariance, resulting in a higher computational time compared to the Extended Kalman Filter (EKF). In the proposed method, the posterior mean state vector is propagated and then the sigma points at the current time step are calculated using the first-order Taylor Series approximation. This reduces the computation time significantly, as demonstrated using two example applications which show improvements of 90.5% and 92.6%. This method shows the estimated state vector and the error covariance are accurate to the first-order Taylor series terms. A second method using Richardson Extrapolation improves prediction accuracy to the second-order Taylor series terms. This is implemented on the two examples, improving efficiency by 85.5% and 86.8%.
机译:描述了无味卡尔曼滤波器(UKF)的先验状态向量和误差协方差计算。原始UKF传播多个sigma点,以计算先验平均状态向量和误差协方差,与扩展卡尔曼滤波器(EKF)相比,计算时间更长。在所提出的方法中,传播后平均状态向量,然后使用一阶泰勒级数逼近计算当前时间步的西格玛点。如使用两个示例应用程序所展示的,这分别减少了90.5%和92.6%,这大大减少了计算时间。该方法表明估计的状态向量和误差协方差对于一阶泰勒级数项是准确的。使用Richardson外推法的第二种方法将预测精度提高到了二阶泰勒级数项。这是在两个示例上实现的,效率分别提高了85.5%和86.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号