首页> 外文期刊>IEEE Transactions on Automatic Control >Inverse Risk-Sensitive Reinforcement Learning
【24h】

Inverse Risk-Sensitive Reinforcement Learning

机译:反向风险敏感的强化学习

获取原文
获取原文并翻译 | 示例

摘要

This work addresses the problem of inverse reinforcement learning in Markov decision processes where the decision-making agent is risk-sensitive. In particular, a risk-sensitive reinforcement learning algorithm with convergence guarantees that makes use of coherent risk metrics and models of human decision-making which have their origins in behavioral psychology and economics is presented. The risk-sensitive reinforcement learning algorithm provides the theoretical underpinning for a gradient-based inverse reinforcement learning algorithm that seeks to minimize a loss function defined on the observed behavior. It is shown that the gradient of the loss function with respect to the model parameters is well defined and computable via a contraction map argument. Evaluation of the proposed technique is performed on a Grid World example, a canonical benchmark problem.
机译:这项工作解决了在马尔可夫决策过程中逆钢筋的问题,其中决策代理<斜体>风险敏感。特别是,提供了一种具有会聚的风险敏感的强化学习算法,其利用具有它们起源于行为心理和经济学的人类决策的相干风险指标和模型。风险敏感的加强学习算法提供了基于梯度的逆钢筋学习算法的理论基础,其寻求最小化在观察到的行为上定义的损耗函数。结果表明,通过收缩图参数,损耗函数的损耗功能的梯度是很好的定义和可计算的。对所提出的技术的评估是对<斜斜体>网格世界示例进行的,是一个规范基准问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号