首页> 外文期刊>IEEE Transactions on Automatic Control >Metric and Topological Entropy Bounds for Optimal Coding of Stochastic Dynamical Systems
【24h】

Metric and Topological Entropy Bounds for Optimal Coding of Stochastic Dynamical Systems

机译:用于随机动力系统的最佳编码的度量和拓扑熵界

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of optimal zero-delay coding and estimation of a stochastic dynamical system over a noisy communication channel under three estimation criteria concerned with the low-distortion regime. The criteria considered are (i) a strong and (ii) a weak form of almost sure stability of the estimation error as well as (ii) asymptotic quadratic stability in expectation. For all three objectives, we derive lower bounds on the smallest channel capacity C-0 above which the objective can be achieved with an arbitrarily small error. We first obtain bounds through a dynamical systems approach by constructing an infinite-dimensional dynamical system and relating the capacity with the topological and the metric entropy of this system. We also consider information-theoretic and probability-theoretic approaches to address the different criteria. Finally, we prove that a memoryless noisy channel in general constitutes no obstruction to asymptotic almost sure state estimation with arbitrarily small errors, when there is no noise in the system. The results provide new solution methods for the criteria introduced (e.g., standard information-theoretic bounds cannot be applied for some of the criteria) and establish further connections between dynamical systems, networked control, and information theory, especially in the context of nonlinear stochastic systems.
机译:在与低失真状态相关的三个估计标准下,考虑在噪声通信信道上最佳零延迟编码和随机动力学系统的估计问题。所考虑的标准是(i)强者,(ii)几乎肯定估计误差稳定性的弱形式,以及(ii)期望的渐近二次稳定性。对于所有三个目标,我们在最小的信道容量C-0上获得了下限,以上可以通过任意误差实现目标。我们首先通过动态系统方法来通过构造无限尺寸的动态系统来获得界限,并将容量与该系统的拓扑和度量熵相关。我们还考虑信息理论和概率 - 理论方法来解决不同的标准。最后,我们证明了一般的无记忆嘈杂的通道在系统中没有噪声时,无记忆嘈杂的渠道对渐近几乎确定状态估计的阻碍几乎肯定的状态估计。结果为引入的标准提供了新的解决方案方法(例如,标准信息定理界限不能应用于一些标准),并在动态系统,网络控制和信息理论之间建立进一步的连接,尤其是在非线性随机系统的背景下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号