首页> 外文期刊>Automatic Control, IEEE Transactions on >Time-Inconsistent Mean-Field Stochastic LQ Problem: Open-Loop Time-Consistent Control
【24h】

Time-Inconsistent Mean-Field Stochastic LQ Problem: Open-Loop Time-Consistent Control

机译:时间不一致的均场随机LQ问题:开环时间一致控制

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the open-loop time-consistent solution of time-inconsistent mean-field stochastic linear-quadratic (LQ) optimal control. Different from standard stochastic linear-quadratic problems, both the system matrices and the weighting matrices are depending on the initial times, and the conditional expectations of the control and state enter quadratically into the cost functional. Such features will ruin Bellman's principle of optimality and result in the time inconsistency of optimal control. Based on the dynamical nature of the systems involved, a kind of open-loop time-consistent equilibrium control is investigated in this paper. It is shown that the existence of open-loop equilibrium control for a fixed initial pair is equivalent to the solvability of a set of forward–backward stochastic difference equations with stationary condition and convexity condition. By decoupling the forward–backward stochastic difference equations, necessary and sufficient conditions in terms of linear difference equations and generalized difference Riccati equations are given for the existence of open-loop equilibrium control for a fixed initial pair. Moreover, the existence of open-loop time-consistent equilibrium controls for all the initial pairs is shown to be equivalent to the solvability of a set of coupled constrained generalized difference Riccati equations and two sets of constrained linear difference equations.
机译:本文涉及时间不一致的平均场随机线性二次(LQ)最优控制的开环时间一致解。与标准随机线性二次问题不同,系统矩阵和权重矩阵都取决于初始时间,控制和状态的条件期望值二次进入成本函数。这些特征将破坏Bellman的最优性原则,并导致最优控制的时间不一致。基于所涉及系统的动力学性质,本文研究了一种开环时间一致的平衡控制。结果表明,对于一个固定的初始对来说,开环平衡控制的存在等同于一组具有平稳条件和凸条件的正向和反向随机差分方程的可解性。通过解耦前后正向随机差分方程,给出了线性差分方程和广义差分Riccati方程在固定初始对的开环平衡控制下的充要条件。此外,所有初始对的开环时间一致均衡控制的存在被证明等效于一组耦合的约束广义差Riccati方程组和两组约束的线性差方程的可解性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号