首页> 外文期刊>IEEE Transactions on Automatic Control >A New Approach to Linear/Nonlinear Distributed Fusion Estimation Problem
【24h】

A New Approach to Linear/Nonlinear Distributed Fusion Estimation Problem

机译:线性/非线性分布式融合估计问题的新方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the distributed fusion estimation problem for linear time-varying systems and nonlinear systems with bounded noises, where the addressed noises do not provide any statistical information, and are unknown but bounded. When considering linear time-varying fusion systems with bounded noises, a new local Kalman-like estimator is designed such that the square error of the estimator is bounded as time goes to infinity. A novel constructive method is proposed to find an upper bound of fusion estimation error, then a convex optimization problem on the design of an optimal weighting fusion criterion is established in terms of linear matrix inequalities, which can be solved by standard software packages. Furthermore, according to the design method of linear time-varying fusion systems, each local nonlinear estimator is derived for nonlinear systems with bounded noises by using Taylor series expansion, and a corresponding distributed fusion criterion is obtained by solving a convex optimization problem. Finally, target tracking system and localization of a mobile robot are given to show the advantages and effectiveness of the proposed methods.
机译:在本文中,我们研究具有时变噪声的线性时变系统和非线性系统的分布式融合估计问题,其中所解决的噪声不提供任何统计信息,并且未知但有界。当考虑带有有界噪声的线性时变融合系统时,设计了一种新的局部卡尔曼式估计器,使得随着时间到无穷远,估计器的平方误差有界。提出了一种新颖的构造方法来寻找融合估计误差的上限,然后针对线性矩阵不等式建立了最优加权融合准则设计的凸优化问题,可以通过标准软件包解决。此外,根据线性时变融合系统的设计方法,利用泰勒级数展开式推导带噪声的非线性系统的每个局部非线性估计量,并通过求解凸优化问题得到相应的分布式融合准则。最后,给出了目标跟踪系统和移动机器人的定位,以证明所提方法的优点和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号