首页> 外文期刊>Automated software engineering >Faster discovery of faster system configurations with spectral learning
【24h】

Faster discovery of faster system configurations with spectral learning

机译:通过频谱学习更快地发现更快的系统配置

获取原文
获取原文并翻译 | 示例

摘要

Despite the huge spread and economical importance of configurable software systems, there is unsatisfactory support in utilizing the full potential of these systems with respect to finding performance-optimal configurations. Prior work on predicting the performance of software configurations suffered from either (a) requiring far too many sample configurations or (b) large variances in their predictions. Both these problems can be avoided using the WHAT spectral learner. WHAT ’s innovation is the use of the spectrum (eigenvalues) of the distance matrix between the configurations of a configurable software system, to perform dimensionality reduction. Within that reduced configuration space, many closely associated configurations can be studied by executing only a few sample configurations. For the subject systems studied here, a few dozen samples yield accurate and stable predictors—less than 10% prediction error, with a standard deviation of less than 2%. When compared to the state of the art, WHAT (a) requires 2–10 times fewer samples to achieve similar prediction accuracies, and (b) its predictions are more stable (i.e., have lower standard deviation). Furthermore, we demonstrate that predictive models generated by WHAT can be used by optimizers to discover system configurations that closely approach the optimal performance.
机译:尽管可配置软件系统具有巨大的传播和经济意义,但是在寻找性能最佳配置方面,在利用这些系统的全部潜力方面并没有令人满意的支持。先前对软件配置性能进行预测的工作是(a)需要太多示例配置或(b)其预测存在较大差异。使用WHAT频谱学习器可以避免这两个问题。创新之处在于利用可配置软件系统的配置之间的距离矩阵的频谱(特征值)来执行降维。在减少的配置空间内,可以通过仅执行一些样本配置来研究许多紧密相关的配置。对于此处研究的主题系统,几十个样本产生了准确而稳定的预测变量-预测误差小于10%,标准偏差小于2%。与现有技术相比,(a)所需的样本要少2-10倍才能达到相似的预测精度,并且(b)其预测更加稳定(即标准偏差较低)。此外,我们证明了WHAT生成的预测模型可被优化程序用来发现接近最佳性能的系统配置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号