首页> 外文期刊>Automated software engineering >Deep learning approach for intrusion detection in IoT-muIti cloud environment
【24h】

Deep learning approach for intrusion detection in IoT-muIti cloud environment

机译:IOT-MUITI云环境中入侵检测的深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

The possibility of connecting billions of smart end devices in the Internet of Things (IoT) provides wide range of services to the user. But, the unlimited connectivity of devices in IoT brings security issues when it is connected to wireless networks. Integrating cloud with IoT networks gains more attention as it reduces the sensor node resource limitations. However, the network complexity, open broadcast characteristics of IoT networks are vulnerable to attacks. To ensure network security and reliable operations, Intrusion Detection Systems (IDS) are widely preferred. IDS identifies the anomalies effectively in complex network environments and ensures the security of the network. Traditional intrusion detection systems based on neural networks consume long training time and low classification accuracy. Recently, deep learning methods are widely used in various image and signal processing, security applications. This research work presents a deep learning-based intrusion detection system for multi-cloud IoT environment to overcome the limitations of neural network-based intrusion detection models. The proposed intrusion detection model improves the detection accuracy by improving the training efficiency. Experimental evaluation of proposed model using NSL-KDD dataset provides improved performance than conventional techniques attaining 97.51% of detection rate, 96.28% of detection accuracy, and 94.41% of precision.
机译:在物联网(IOT)中连接数十亿智能终端设备(IOT)提供了广泛的服务。但是,在连接到无线网络时,IOT中的设备的无限连接会带来安全问题。将云与IoT网络集成在减少传感器节点资源限制时更加关注。但是,网络复杂性,IoT网络的开放广播特征易受攻击。为确保网络安全性和可靠的操作,侵入检测系统(IDS)是广泛的优选的。 IDS在复杂的网络环境中有效地识别异常,并确保网络的安全性。基于神经网络的传统入侵检测系统消耗了长训练时间和低分类精度。最近,深度学习方法广泛用于各种图像和信号处理,安全应用。本研究工作提出了一种基于深度学习的侵入检测系统,用于多云IOT环境,以克服基于神经网络的入侵检测模型的局限性。所提出的入侵检测模型通过提高培训效率来提高检测精度。使用NSL-KDD数据集的提出模型的实验评估提供了比常规技术的提高性能,其检测率的97.51%,检测精度为96.28%,精度的94.41%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号