首页> 外文期刊>Automated software engineering >Cloud-based multiple importance sampling algorithm with Al based CNN classifier for secure infrastructure
【24h】

Cloud-based multiple importance sampling algorithm with Al based CNN classifier for secure infrastructure

机译:基于云基于CNN分类器的云的多重重点采样算法,用于安全基础设施

获取原文
获取原文并翻译 | 示例

摘要

Enhancing Security infrastructure in the cloud data center has been a typical task that includes tracking human motion and their body parts under dynamic environment has been a difficult task during video detection situations. The research proposal's goal is to propose the human object video tracking methods to estimate the movement of human upper body actions and classify it under a dynamic environment. Moreover, the movement of upper body parts estimation includes face and arm variation or detections to define the classification problem. Considering the combination of frequent moving object parts with occlusion problems, decision making of target object identification and upper body pose variations will result in improving the classification accuracy. It also helps with a reduction in occlusion of the moving body parts detection. The modified multiple importance sampling filter with Al-based convolution neural network classifier has been proposed to track human poses with fast-moving actions. Dynamic sampling filer tracks the upper part of the human body with 2D images and 3D postures. Finally, similar poses are classified using an updated convolution neural network classifier which is designed for human object classification. The high accuracy of the system has been obtained for cluttered environments with occlusion problems by properly obtaining the sampling states of the filter as shown in the experimental result analysis part.
机译:增强云数据中心中的安全基础设施一直是一个典型的任务,包括跟踪人类运动,并且在动态环境下的身体部位在视频检测情况下是一项艰巨的任务。研究提案的目标是提出人类对象视频跟踪方法来估计人类上身动作的运动,并在动态环境下对其进行分类。此外,上身估计的运动包括面部和臂变化或检测以定义分类问题。考虑到具有遮挡问题的频繁移动对象部分的组合,目标对象识别和上身姿势变化的决策将导致提高分类精度。它还有助于减少移动体部件检测的闭塞。已经提出了具有基于AL的卷积神经网络分类器的修改的多个重要采样滤波器来跟踪具有快速移动动作的人类姿势。动态采样筛分用2D图像和3D姿势跟踪人体的上部。最后,使用更新的卷积神经网络分类器对类似的姿势进行分类,该分类器被设计用于人类对象分类。通过在实验结果分析部分中所示的滤波器的采样状态适当地获得滤波器的杂于闭塞问题,已经获得了系统的高精度。

著录项

  • 来源
    《Automated software engineering》 |2021年第2期|497-524|共28页
  • 作者

    R.Dhaya; R.Kanthavel;

  • 作者单位

    Department of Computer Science Sarat Abida Campus-King Khalid University Abha Saudi Arabia Department of Computer Engineering King Khalid University Abha Saudi Arabia;

    Department of Computer Science Sarat Abida Campus-King Khalid University Abha Saudi Arabia Department of Computer Engineering King Khalid University Abha Saudi Arabia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Human upper body parts; Occlusion; MMIS; AI-CNN; Dynamic environment; 2D image; 3D image;

    机译:人体上身;闭塞;mmis;AI-CNN;动态环境;2D图像;3D图像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号