首页> 外文期刊>Automated software engineering >Discriminating features-based cost-sensitive approach for software defect prediction
【24h】

Discriminating features-based cost-sensitive approach for software defect prediction

机译:用于软件缺陷预测的基于特征的成本敏感方法

获取原文
获取原文并翻译 | 示例

摘要

Correlated quality metrics extracted from a source code repository can be utilized to design a model to automatically predict defects in a software system. It is obvious that the extracted metrics will result in a highly unbalanced data, since the number of defects in a good quality software system should be far less than the number of normal instances. It is also a fact that the selection of the best discriminating features significantly improves the robustness and accuracy of a prediction model. Therefore, the contribution of this paper is twofold, first it selects the best discriminating features that help in accurately predicting a defect in a software component. Secondly, a cost-sensitive logistic regression and decision tree ensemble-based prediction models are applied to the best discriminating features for precisely predicting a defect in a software component. The proposed models are compared with the most recent schemes in the literature in terms of accuracy, area under the curve, and recall. The models are evaluated using 11 datasets and it is evident from the results and analysis that the performance of the proposed prediction models outperforms the schemes in the literature.
机译:从源代码存储库中提取的相关质量指标可以利用来设计模型以自动预测软件系统中的缺陷。显而易见的是,提取的指标将导致高度不平衡的数据,因为良好质量的软件系统中的缺陷数量应该远低于正常情况的数量。还有一个事实,最佳辨别特征的选择显着提高了预测模型的鲁棒性和准确性。因此,本文的贡献是双重的,首先选择最佳辨别特征,帮助准确地预测软件组件中的缺陷。其次,将成本敏感的逻辑回归和基于决策树集合的预测模型应用于最佳辨别特征,以精确地预测软件组件中的缺陷。拟议的模型与文献中的最新方案进行比较,在曲线下的准确性,区域和召回方面。使用11个数据集进行评估模型,从结果和分析中显而易见的是,所提出的预测模型的性能优于文献中的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号