首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Domain Adaptation in Semantic Role Labeling Using a Neural Language Model and Linguistic Resources
【24h】

Domain Adaptation in Semantic Role Labeling Using a Neural Language Model and Linguistic Resources

机译:使用神经语言模型和语言资源的语义角色标记中的域自适应

获取原文
获取原文并翻译 | 示例

摘要

We propose a method for adapting Semantic Role Labeling (SRL) systems from a source domain to a target domain by combining a neural language model and linguistic resources to generate additional training examples. We primarily aim to improve the results of Location, Time, Manner and Direction roles. In our methodology, main words of selected predicates and arguments in the source-domain training data are replaced with words from the target domain. The replacement words are generated by a language model and then filtered by several linguistic filters (including Part-Of-Speech (POS), WordNet and Predicate constraints). In experiments on the out-of-domain CoNLL 2009 data, with the Recurrent Neural Network Language Model (RNNLM) and a well-known semantic parser from Lund University, we show enhanced recall and F1 without penalizing precision on the four targeted roles. These results improve the results of the same SRL system without using the language model and the linguistic resources, and are better than the results of the same SRL system that is trained with examples that are enriched with word embeddings. We also demonstrate the importance of using a language model and the vocabulary of the target domain when generating new training examples.
机译:我们提出了一种通过组合神经语言模型和语言资源来生成其他训练示例的方法,将语义角色标记(SRL)系统从源域调整为目标域。我们的主要目标是改善位置,时间,方式和方向角色的结果。在我们的方法中,源域训练数据中选定谓词和自变量的主要单词被目标域的单词替换。替换单词由语言模型生成,然后由几个语言过滤器(包括词性(POS),WordNet和谓词约束)过滤。在域外CoNLL 2009数据的实验中,使用递归神经网络语言模型(RNNLM)和隆德大学著名的语义解析器,我们展示了增强的查全率和F1,而不会对四个目标角色造成精度损失。这些结果在不使用语言模型和语言资源的情况下改进了相同SRL系统的结果,并且优于使用经过丰富词嵌入示例训练的同一SRL系统的结果。我们还演示了在生成新的训练示例时使用语言模型和目标领域词汇的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号