首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Multi-Channel Linear Prediction-Based Speech Dereverberation With Sparse Priors
【24h】

Multi-Channel Linear Prediction-Based Speech Dereverberation With Sparse Priors

机译:具有稀疏先验的基于多通道线性预测的语音混响

获取原文
获取原文并翻译 | 示例

摘要

The quality of speech signals recorded in an enclosure can be severely degraded by room reverberation. In this paper, we focus on a class of blind batch methods for speech dereverberation in a noiseless scenario with a single source, which are based on multi-channel linear prediction in the short-time Fourier transform domain. Dereverberation is performed by maximum-likelihood estimation of the model parameters that are subsequently used to recover the desired speech signal. Contrary to the conventional method, we propose to model the desired speech signal using a general sparse prior that can be represented in a convex form as a maximization over scaled complex Gaussian distributions. The proposed model can be interpreted as a generalization of the commonly used time-varying Gaussian model. Furthermore, we reformulate both the conventional and the proposed method as an optimization problem with an -norm cost function, emphasizing the role of sparsity in the considered speech dereverberation methods. Experimental evaluation in different acoustic scenarios show that the proposed approach results in an improved performance compared to the conventional approach in terms of instrumental measures for speech quality.
机译:房间混响会严重降低外壳中记录的语音信号的质量。在本文中,我们集中在基于短时傅立叶变换域中的多通道线性预测的一类无噪声场景下,具有单一来源的语音去混响的盲处理方法。去混响是通过模型参数的最大似然估计执行的,模型参数随后用于恢复所需的语音信号。与传统方法相反,我们建议使用通用稀疏先验对所需语音信号进行建模,该稀疏先验可以凸面形式表示为缩放后的复杂高斯分布的最大化。所提出的模型可以解释为常用的时变高斯模型的推广。此外,我们将常规方法和拟议方法都重新设计为具有-norm成本函数的优化问题,强调了稀疏性在考虑的语音去混响方法中的作用。在不同声学场景下的实验评估表明,与传统方法相比,该方法在语音质量的仪器测量方面具有更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号