首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Identifying Cover Songs Using Information-Theoretic Measures of Similarity
【24h】

Identifying Cover Songs Using Information-Theoretic Measures of Similarity

机译:使用相似度的信息理论方法识别翻唱歌曲

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates methods for quantifying similarity between audio signals, specifically for the task of cover song detection. We consider an information-theoretic approach, where we compute pairwise measures of predictability between time series. We compare discrete-valued approaches operating on quantized audio features, to continuous-valued approaches. In the discrete case, we propose a method for computing the normalized compression distance, where we account for correlation between time series. In the continuous case, we propose to compute information-based measures of similarity as statistics of the prediction error between time series. We evaluate our methods on two cover song identification tasks using a data set comprised of 300 Jazz standards and using the Million Song Dataset. For both datasets, we observe that continuous-valued approaches outperform discrete-valued approaches. We consider approaches to estimating the normalized compression distance (NCD) based on string compression and prediction, where we observe that our proposed normalized compression distance with alignment (NCDA) improves average performance over NCD, for sequential compression algorithms. Finally, we demonstrate that continuous-valued distances may be combined to improve performance with respect to baseline approaches. Using a large-scale filter-and-refine approach, we demonstrate state-of-the-art performance for cover song identification using the Million Song Dataset.
机译:本文研究了量化音频信号之间相似度的方法,特别是针对翻唱歌曲检测的任务。我们考虑一种信息理论方法,其中我们计算时间序列之间的可预测性的成对度量。我们将基于量化音频功能的离散值方法与连续值方法进行了比较。在离散情况下,我们提出了一种计算归一化压缩距离的方法,其中考虑了时间序列之间的相关性。在连续情况下,我们建议计算基于信息的相似性度量,作为时间序列之间的预测误差的统计量。我们使用包含300个爵士乐标准的数据集和“百万首歌曲”数据集,评估了我们在两种翻唱歌曲识别任务上的方法。对于这两个数据集,我们都观察到连续值方法优于离散值方法。我们考虑了基于字符串压缩和预测来估计归一化压缩距离(NCD)的方法,其中我们观察到我们提出的带对齐的归一化压缩距离(NCDA)可以提高NCD的平均性能,适用于顺序压缩算法。最后,我们证明了可以结合使用连续值距离来提高相对于基线方法的性能。使用大规模的筛选和优化方法,我们演示了使用Million Song Dataset进行翻唱歌曲识别的最新性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号