首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Combination of Language Models for Word Prediction: An Exponential Approach
【24h】

Combination of Language Models for Word Prediction: An Exponential Approach

机译:语言模型的组合用于单词预测:一种指数方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an exponential interpolation to merge a part-of-speech-based language model and a word-based -gram language model to accomplish word prediction tasks. In order to find a set of mathematical equations to properly describe the language modeling, a model based on partial differential equations is proposed. With the appropriate initial conditions, it was found an interpolation model similar to the traditional maximum entropy language model. Improvements in keystroke saved and perplexity over the word-based -gram language model and two other traditional interpolation models is obtained, considering three different languages. The proposed interpolation model also provides additional improvement in hit rate parameter.
机译:本文提出了一种指数插值法,将基于词性的语言模型和基于词的语法语言模型进行融合,以完成词的预测任务。为了找到正确描述语言建模的数学方程组,提出了一种基于偏微分方程的模型。在适当的初始条件下,发现了类似于传统最大熵语言模型的插值模型。考虑到三种不同的语言,在基于单词的语法语言模型和其他两个传统的插值模型上,节省了击键次数并增加了困惑。提出的插值模型还提供了命中率参数的其他改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号