首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >A Deep Ensemble Learning Method for Monaural Speech Separation
【24h】

A Deep Ensemble Learning Method for Monaural Speech Separation

机译:一种用于单声道语音分离的深度集成学习方法

获取原文
获取原文并翻译 | 示例

摘要

Monaural speech separation is a fundamental problem in robust speech processing. Recently, deep neural network (DNN)-based speech separation methods, which predict either clean speech or an ideal time-frequency mask, have demonstrated remarkable performance improvement. However, a single DNN with a given window length does not leverage contextual information sufficiently, and the differences between the two optimization objectives are not well understood. In this paper, we propose a deep ensemble method, named multicontext networks, to address monaural speech separation. The first multicontext network averages the outputs of multiple DNNs whose inputs employ different window lengths. The second multicontext network is a stack of multiple DNNs. Each DNN in a module of the stack takes the concatenation of original acoustic features and expansion of the soft output of the lower module as its input, and predicts the ratio mask of the target speaker; the DNNs in the same module employ different contexts. We have conducted extensive experiments with three speech corpora. The results demonstrate the effectiveness of the proposed method. We have also compared the two optimization objectives systematically and found that predicting the ideal time-frequency mask is more efficient in utilizing clean training speech, while predicting clean speech is less sensitive to SNR variations.
机译:单声道语音分离是鲁棒语音处理中的基本问题。近来,基于深度神经网络(DNN)的语音分离方法可预测清晰的语音或理想的时频蒙版,已显示出显着的性能提升。但是,具有给定窗口长度的单个DNN无法充分利用上下文信息,并且对两个优化目标之间的差异也知之甚少。在本文中,我们提出了一种深度集成方法,称为多上下文网络,用于解决单声道语音分离。第一个多上下文网络对输入采用不同窗口长度的多个DNN的输出求平均。第二个多上下文网络是多个DNN的堆栈。堆栈模块中的每个DNN都将原始声学特征的串联和下部模块的软输出的扩展作为其输入,并预测目标扬声器的比率掩码;同一模块中的DNN使用不同的上下文。我们对三种语音语料库进行了广泛的实验。结果证明了该方法的有效性。我们还系统地比较了两个优化目标,发现预测理想的时频模板在利用干净的训练语音方面效率更高,而预测干净的语音对SNR变化的敏感性较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号