首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Deep-Sparse-Representation-Based Features for Speech Recognition
【24h】

Deep-Sparse-Representation-Based Features for Speech Recognition

机译:基于深度稀疏表示的语音识别功能

获取原文
获取原文并翻译 | 示例

摘要

Features derived using sparse representation (SR)-based approaches have been shown to yield promising results for speech recognition tasks. In most of the approaches, the SR corresponding to speech signal is estimated using a dictionary, which could be either exemplar based or learned. However, a single-level decomposition may not be suitable for the speech signal, as it contains complex hierarchical information about various hidden attributes. In this paper, we propose to use a multilevel decomposition (having multiple layers), also known as the deep sparse representation (DSR), to derive a feature representation for speech recognition. Instead of having a series of sparse layers, the proposed framework employs a dense layer between two sparse layers, which helps in efficient implementation. Our studies reveal that the representations obtained at different sparse layers of the proposed DSR model have complimentary information. Thus, the final feature representation is derived after concatenating the representations obtained at the sparse layers. This results in a more discriminative representation, and improves the speech recognition performance. Since the concatenation results in a high-dimensional feature, principal component analysis is used to reduce the dimension of the obtained feature. Experimental studies demonstrate that the proposed feature outperforms existing features for various speech recognition tasks.
机译:使用基于稀疏表示(SR)的方法派生的功能已显示出可实现语音识别任务的有希望的结果。在大多数方法中,使用词典估计与语音信号相对应的SR,该词典可以是基于示例的,也可以是学习的。但是,单级分解可能不适合语音信号,因为它包含有关各种隐藏属性的复杂层次信息。在本文中,我们建议使用多级分解(具有多个层次),也称为深度稀疏表示(DSR),以得出用于语音识别的特征表示。所提出的框架不是具有一系列的稀疏层,而是在两个稀疏层之间使用了一个密集层,这有助于有效实现。我们的研究表明,在提出的DSR模型的不同稀疏层获得的表示具有互补的信息。因此,最终特征表示是在将稀疏层处获得的表示连接在一起后得出的。这导致更具区分性的表示,并提高了语音识别性能。由于级联会产生高维特征,因此使用主成分分析来减小获得的特征的维数。实验研究表明,针对各种语音识别任务,所提出的特征优于现有特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号