首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Two-Stage Single-Channel Audio Source Separation Using Deep Neural Networks
【24h】

Two-Stage Single-Channel Audio Source Separation Using Deep Neural Networks

机译:使用深度神经网络的两阶段单通道音频源分离

获取原文
获取原文并翻译 | 示例

摘要

Most single channel audio source separation approaches produce separated sources accompanied by interference from other sources and other distortions. To tackle this problem, we propose to separate the sources in two stages. In the first stage, the sources are separated from the mixed signal. In the second stage, the interference between the separated sources and the distortions are reduced using deep neural networks (DNNs). We propose two methods that use DNNs to improve the quality of the separated sources in the second stage. In the first method, each separated source is improved individually using its own trained DNN, while in the second method all the separated sources are improved together using a single DNN. To further improve the quality of the separated sources, the DNNs in the second stage are trained discriminatively to further decrease the interference and the distortions of the separated sources. Our experimental results show that using two stages of separation improves the quality of the separated signals by decreasing the interference between the separated sources and distortions compared to separating the sources using a single stage of separation.
机译:大多数单声道音频源分离方法会产生分离的源,并伴有来自其他源的干扰和其他失真。为了解决这个问题,我们建议将资源分为两个阶段。在第一阶段,将源与混合信号分离。在第二阶段,使用深度神经网络(DNN)减少了分离源之间的干扰和失真。我们提出了两种使用DNN的方法来提高第二阶段分离源的质量。在第一种方法中,每个分离的源使用其自己训练有素的DNN进行单独改进,而在第二种方法中,所有分离的源使用单个DNN一起进行改进。为了进一步提高分离源的质量,对第二阶段的DNN进行有区别的训练,以进一步减少分离源的干扰和失真。我们的实验结果表明,与使用单级分离相比,使用两级分离可以降低分离的源之间的干扰和失真,从而提高了分离信号的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号