机译:多任务递归模型的协同联合训练,用于语音和说话者识别
Chengdu Institute of Computer Applications, University of Chinese Academy of Sciences, Beijing, China;
Tsinghua National Laboratory for Information Science and Technology and the Center for Speech and Language Technologies, Tsinghua University, Beijing, China;
Tsinghua National Laboratory for Information Science and Technology and the Center for Speech and Language Technologies, Tsinghua University, Beijing, China;
Nuance, Marlow, U.K.;
Speech; Collaboration; Speech recognition; Training; Speech processing; Speaker recognition; Hidden Markov models;
机译:基于说话者的基于深度神经网络的单通道联合语音分离和声学建模方法,用于多语音对话的鲁棒识别
机译:使用由MLLR转换生成的伪扬声器特征进行声学模型训练,以实现与扬声器无关的可靠语音识别
机译:使用由MLLR转换生成的伪扬声器特征进行声学模型训练,以实现与扬声器无关的可靠语音识别
机译:联合培训用于语音识别和语音识别的结尾系统,与扬声器属性
机译:语音和说话者识别相结合:一种联合建模方法
机译:通过语音分离和联合自适应训练提高深度神经网络声学模型的鲁棒性
机译:使用由MLLR转换生成的伪扬声器特征进行声学模型训练,以实现与扬声器无关的可靠语音识别