首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Blind Sampling Rate Offset Estimation for Wireless Acoustic Sensor Networks Through Weighted Least-Squares Coherence Drift Estimation
【24h】

Blind Sampling Rate Offset Estimation for Wireless Acoustic Sensor Networks Through Weighted Least-Squares Coherence Drift Estimation

机译:通过加权最小二乘相干漂移估计进行无线声学传感器网络的盲采样速率偏移估计

获取原文
获取原文并翻译 | 示例

摘要

Microphone arrays allow to exploit the spatial coherence between simultaneously recorded microphone signals, e.g., to perform speech enhancement, i.e., to extract a speech signal and reduce background noise. However, in systems where the microphones are not sampled in a synchronous fashion, as it is often the case in wireless acoustic sensor networks, a sampling rate offset (SRO) exists between signals recorded in different nodes, which severely affects the speech enhancement performance. To avoid this performance reduction, the SRO should be estimated and compensated for. In this paper, we propose a new approach to blind SRO estimation for an asynchronous wireless acoustic sensor network, which exploits the phase drift of the coherence between the asynchronous microphones signals. We utilize the fact that the SRO causes a linearly increasing time delay between two signals and hence a linearly increasing phase-shift in the short-time Fourier transform domain. The increasing phase shift, observed as a phase drift of the coherence between the signals, is used in a weighted least-squares framework to estimate the SRO. This method is referred to as least-squares coherence drift (LCD). Experimental results in different real-world recording and simulated scenarios show the effectiveness of LCD compared to different benchmark methods. The LCD is effective even for short signal segments. We finally demonstrate that the use of the LCD within a conventional compensation approach eliminates the performance loss due to SRO in a speech enhancement algorithm based on the multichannel Wiener filter.
机译:麦克风阵列允许利用同时记录的麦克风信号之间的空间相干性,例如执行语音增强,即提取语音信号并减少背景噪声。但是,在未以同步方式对麦克风进行采样的系统中(如无线声学传感器网络中的常见情况),在记录在不同节点中的信号之间存在采样率偏移(SRO),这严重影响了语音增强性能。为了避免这种性能下降,应该对SRO进行估算和补偿。在本文中,我们提出了一种用于异步无线声传感器网络的盲SRO估计的新方法,该方法利用了异步麦克风信号之间相干性的相位漂移。我们利用了一个事实,即SRO导致两个信号之间的线性延迟增加,从而在短时傅立叶变换域中线性增加了相移。作为加权信号的相干性的相移观察到的增加的相移在加权最小二乘框架中用于估计SRO。此方法称为最小二乘相干漂移(LCD)。在不同的实际记录和模拟场景下的实验结果表明,与不同的基准测试方法相比,LCD的有效性。 LCD对于短信号段也有效。我们最终证明,在传统的补偿方法中使用LCD可以消除基于多通道维纳滤波器的语音增强算法中由于SRO引起的性能损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号