机译:为广播新闻的故事分段建模潜在主题和时间距离
School of Computer Science, Northwestern Polytechnical University, Xi’an, China;
School of Computer Science, Northwestern Polytechnical University, Xi’an, China;
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore;
School of Computer Science, Northwestern Polytechnical University, Xi’an, China;
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore;
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Department of Electrical and Computer Engineering, National University of Singapore, SingaporeSingapore;
Laplace equations; Probabilistic logic; Data models; Speech; Semantics; Speech processing; Manifolds;
机译:通过基于主题的细分模型和遗传算法对广播新闻进行故事细分和主题分类
机译:通过深度卷积神经网络,电视新闻广播视频中的分类计划和故事边界分割
机译:通过深度卷积神经网络,电视新闻广播视频中的分类计划和故事边界分割
机译:使用流形学习对潜在主题分布进行广播新闻报道分段
机译:视频新闻广播中的故事跟踪。
机译:使用Kullback-Leibler散度和Bhattacharyya距离的复杂时间主题演化建模
机译:使用远程相关的中国餐馆过程进行无监管的广播新闻故事分割