首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Structured Sparse Spectral Transforms and Structural Measures for Voice Conversion
【24h】

Structured Sparse Spectral Transforms and Structural Measures for Voice Conversion

机译:结构化稀疏频谱变换和语音转换的结构度量

获取原文
获取原文并翻译 | 示例

摘要

We investigate a structured sparse spectral transform method for voice conversion (VC) to perform frequency warping and spectral shaping simultaneously on high-dimensional (D) STRAIGHT spectra. Learning a large transform matrix for high-D data often results in an overfit matrix with low sparsity, which leads to muffled speech in VC. We address this problem by using the frequency-warping characteristic of a source–target speaker pair to define a region of support (ROS) in a transform matrix, and further optimize it by nonnegative matrix factorization (NMF) to obtain structured sparse transform. We also investigate structural measures of spectral and temporal covariance and variance at different scales for assessing VC speech quality. Our experiments on ARCTIC dataset of 12 speaker pairs show that embedding the ROS in spectral transforms offers flexibility in tradeoffs between spectral distortion and structure preservation, and the structural measures provide quantitatively reasonable results on converted speech. Our subjective listening tests show that the proposed VC method achieves a mean opinion score of “very good” relative to natural speech, and in comparison with three other VC methods, it is the most preferred one in naturalness and in voice similarity to target speakers.
机译:我们研究语音转换(VC)的结构化稀疏频谱变换方法,以同时对高维(D)STRAIGHT频谱执行频率变形和频谱整形。学习大数据矩阵以获得高D数据通常会导致稀疏度低的过拟合矩阵,从而导致VC中的语音模糊。我们通过使用源-目标说话人对的频率扭曲特性来定义变换矩阵中的支持区域(ROS),并通过非负矩阵分解(NMF)对其进行优化以获得结构化的稀疏变换,从而解决了这一问题。我们还研究了频谱和时间协方差和方差在不同尺度上的结构化测量,以评估VC语音质量。我们在12个说话人对的ARCTIC数据集上进行的实验表明,将ROS嵌入频谱变换中可以灵活地权衡频谱失真和结构保留之间的折衷,并且结构化措施可为转换后的语音提供定量合理的结果。我们的主观听力测试表明,相对于自然语音,所提出的VC方法的平均意见得分为“非常好”,并且与其他三种VC方法相比,在自然性和语音相似性方面,与目标说话者相比,它是最优选的一种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号