首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >LID-Senones and Their Statistics for Language Identification
【24h】

LID-Senones and Their Statistics for Language Identification

机译:LID-Senones及其语言识别统计

获取原文
获取原文并翻译 | 示例

摘要

Recent research on end-to-end training structures for language identification has raised the possibility that intermediate language-sensitive feature units exist which are analogous to phonetically sensitive senones in automatic speech recognition systems. Termed language identification (LID)-senones, the statistics derived from these feature units have been shown to be beneficial in discriminating between languages, particularly for short utterances. This paper examines the evidence for the existence of LID-senones before designing and evaluating LID systems based on low- and high-level statistics of LID-senones with both generative and discriminative models. For the standard NIST LRE 2009 task on 23 languages, LID-senone-based systems are shown to outperform state-of-the-art deep neural network/i-vector methods both when LID-senones are used directly for classification and when LID-senone statistics are used for i-vector formation.
机译:对用于语言识别的端到端训练结构的最新研究提出了以下可能性:存在类似于自动语音识别系统中对语音敏感的senone的对语言敏感的中间特征单元。从这些特征单元派生的统计数据被称为语言识别(LID)音调,这在区分语言(特别是简短说话)时是有益的。本文在基于生成和判别模型对LID-senones进行低级和高级统计的基础上设计和评估LID系统之前,先检查LID-senones存在的证据。对于使用23种语言的标准NIST LRE 2009任务,无论是直接使用LID-senones进行分类还是使用LID-sones进行分类,基于LID-senone的系统都表现出优于最新的深度神经网络/ i-vector方法。 senone统计信息用于i-vector的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号