首页> 外文OA文献 >LID-senone Extraction via Deep Neural Networks for End-to-End Language Identification
【2h】

LID-senone Extraction via Deep Neural Networks for End-to-End Language Identification

机译:通过深度神经网络提取LID-senone以进行端到端语言识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key problem in spoken language identification (LID) is how to effectively model features from a given speech utterance. Recent techniques such as end-to-end schemes and deep neural networks (DNNs) utilising transfer learning such as bottleneck (BN) features, have demonstrated good overall performance, but have not addressed the extraction of LID-specific features.udWe thus propose a novel end-to-end neural network which aims to obtain effective LID-senone representations, which we define as being analogous to senones in speech recognition. We show that LID-senones combine a compact representation of the original acoustic feature space with a powerful descriptive and discriminative capability. Furthermore, a novel incremental training method is proposed to extract the weak language information buried in the acoustic features of insufficient language resources. Results on the six most confused languages in NIST LRE 2009 show good performance compared to state-of-the-art BN-GMM/i-vector and BN-DNN/i-vector systems. The proposed end-to-end network, coupled with an incremental training method which mitigates against over-fitting, has potential not just for LID, but also for other resource constrained tasks.
机译:语音识别(LID)中的关键问题是如何根据给定的语音发音有效地对特征建模。利用诸如瓶颈(BN)功能之类的转移学习的端到端方案和深度神经网络(DNN)等最新技术已显示出良好的整体性能,但未解决LID特定功能的提取。一个新颖的端到端神经网络,旨在获得有效的LID-senone表示,我们将其定义为类似于语音识别中的senone。我们表明,LID-senones结合了原始声学特征空间的紧凑表示形式以及强大的描述和区分能力。此外,提出了一种新的增量训练方法,用于提取隐藏在语言资源不足的声学特征中的弱语言信息。与最新的BN-GMM / i-vector和BN-DNN / i-vector系统相比,NIST LRE 2009中六种最混乱的语言的结果显示出良好的性能。所提出的端到端网络,再加上减轻过度拟合的增量训练方法,不仅对LID具有潜力,而且对其他资源受限的任务也具有潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号