首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Modeling of Individual HRTFs Based on Spatial Principal Component Analysis
【24h】

Modeling of Individual HRTFs Based on Spatial Principal Component Analysis

机译:基于空间主成分分析的个体HRTFS建模

获取原文
获取原文并翻译 | 示例

摘要

Head-related transfer function (HRTF) plays an important role in the construction of 3D auditory display. This article presents an individual HRTF modeling method using deep neural networks based on spatial principal component analysis. The HRTFs are represented by a small set of spatial principal components combined with frequency and individual-dependent weights. By estimating the spatial principal components using deep neural networks and mapping the corresponding weights to a quantity of anthropometric parameters, we predict individual HRTFs in arbitrary spatial directions. The objective and subjective experiments evaluate the HRTFs generated by the proposed method, the principal component analysis (PCA) method, and the generic method. The results show that the HRTFs generated by the proposed method and PCA method perform better than the generic method. For most frequencies the spectral distortion of the proposed method is significantly smaller than the PCA method in the high frequencies but significantly larger in the low frequencies. The evaluation of the localization model shows the PCA method is better than the proposed method. The subjective localization experiments show that the PCA and the proposed methods have similar performances in most conditions. Both the objective and subjective experiments show that the proposed method can predict HRTFs in arbitrary spatial directions.
机译:头部相关传递函数(HRTF)在3D听觉显示器的构建中起着重要作用。本文介绍了一种基于空间主成分分析的深神经网络的单独HRTF建模方法。 HRTFS由一小组空间主组件表示,与频率和单独的权重组合。通过使用深神经网络估计空间主组件并将相应的权重映射到一定数量的人类测量参数,我们预测任意空间方向的单个HRTF。目标和主观实验评估所提出的方法,主成分分析(PCA)方法和通用方法产生的HRTF。结果表明,由所提出的方法和PCA方法产生的HRTF比通用方法更好。对于大多数频率,所提出的方法的光谱失真明显小于高频中的PCA方法,但在低频中明显更大。对本地化模型的评估显示PCA方法优于所提出的方法。主观本地化实验表明,PCA和所提出的方法在大多数条件下具有相似的性能。目标和主观实验都表明该方法可以预测任意空间方向的HRTF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号