首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Multi-Source DOA Estimation Through Pattern Recognition of the Modal Coherence of a Reverberant Soundfield
【24h】

Multi-Source DOA Estimation Through Pattern Recognition of the Modal Coherence of a Reverberant Soundfield

机译:通过模式识别识别混响声场的模态一致性的多源DOA估计

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel multi-source direction of arrival (DOA) estimation technique using a convolutional neural network algorithm which learns the modal coherence patterns of an incident soundfield through measured spherical harmonic coefficients. We train our model for individual time-frequency bins in the short-time Fourier transform spectrum by analyzing the unique snapshot of modal coherence for each desired direction. The proposed method is capable of estimating simultaneously active multiple sound sources on a 3D space using a single-source training scheme. This single-source training scheme reduces the training time and resource requirements as well as allows the reuse of the same trained model for different multi-source combinations. The method is evaluated against various simulated and practical noisy and reverberant environments with varying acoustic criteria and found to outperform the baseline methods in terms of DOA estimation accuracy. Furthermore, the proposed algorithm allows independent training of azimuth and elevation during a full DOA estimation over 3D space which significantly improves its training efficiency without affecting the overall estimation accuracy.
机译:我们提出了一种使用卷积神经网络算法提出了一种新的多源到达(DOA)估计技术,该算法通过测量的球形谐波系数来学习入射声结构场的模态相干模式。通过分析每个所需方向的模态相干的唯一快照,我们在短时间傅立叶变换频谱中培训我们的模型。所提出的方法能够使用单源训练方案在3D空间上同时估计在3D空间上的同时活动多个声源。这种单源训练方案减少了培训时间和资源要求,并允许重用相同的多源组合的训练模型。该方法针对具有不同声学标准的各种模拟和实用噪声和混响环境,并发现在DOA估计准确度方面优于基线方法。此外,所提出的算法允许在3D空间的完整DOA估计期间独立训练方位角和高程,这显着提高了其训练效率而不影响整体估计精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号