首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >A Theory on Deep Neural Network Based Vector-to-Vector Regression With an Illustration of Its Expressive Power in Speech Enhancement
【24h】

A Theory on Deep Neural Network Based Vector-to-Vector Regression With an Illustration of Its Expressive Power in Speech Enhancement

机译:基于深度神经网络的矢量到矢量回归的理论及其在语音增强中的表达力的例证

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on a theoretical analysis of deep neural network (DNN) based functional approximation. Leveraging upon two classical theorems on universal approximation, an artificial neural network (ANN) with a single hidden layer of neurons is used. With modified ReLU and Sigmoid activation functions, we first generalize the related concepts to vector-to-vector regression. Then, we show that the width of the hidden layer of ANN is numerically related to the approximation of the regression function. Furthermore, we increase the number of hidden layers and show that the depth of the ANN-based regression function can enhance its expressive power. We illustrate this representation with recently-emerged DNN based speech enhancement. We first compare the expressive power by varying ANN structures and then test its related regression performance under different noisy conditions in various noise types and signal-to-noise-ratio levels. Experimental results verify our theoretical prediction that an ANN of a broader hidden layer and a deeper architecture can jointly ensure a closer approximation of the vector-to-vector regression functions in terms of the Euclidean distance between the log power spectra of noisy and expected clean speech. Moreover, a DNN with a broader width at the top hidden layer can improve the regression performance relative to those with a narrower width at the top hidden layers.
机译:本文着重于基于深度神经网络(DNN)的函数逼近的理论分析。利用关于通用逼近的两个经典定理,使用具有单个隐藏神经元层的人工神经网络(ANN)。通过修改后的ReLU和Sigmoid激活函数,我们首先将相关概念推广到向量到向量回归。然后,我们表明ANN的隐藏层的宽度与回归函数的逼近在数值上相关。此外,我们增加了隐藏层的数量,并表明基于ANN的回归函数的深度可以增强其表达能力。我们用最近出现的基于DNN的语音增强来说明这种表示。我们首先通过改变神经网络结构比较表达能力,然后在各种噪声类型和信噪比水平下,在不同的噪声条件下测试其相关的回归性能。实验结果验证了我们的理论预测,即更宽的隐藏层和更深的架构的人工神经网络可以共同确保从有声功率谱和预期纯净语音的对数功率谱之间的欧几里得距离,以更接近地逼近矢量到矢量回归函数。此外,与顶部隐藏层宽度较窄的DNN相比,顶部隐藏层宽度较宽的DNN可以提高回归性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号