首页> 外文期刊>IEEE transactions on audio, speech and language processing >Enriching speech recognition with automatic detection of sentence boundaries and disfluencies
【24h】

Enriching speech recognition with automatic detection of sentence boundaries and disfluencies

机译:通过自动检测句子边界和歧义来丰富语音识别

获取原文
获取原文并翻译 | 示例

摘要

Effective human and automatic processing of speech requires recovery of more than just the words. It also involves recovering phenomena such as sentence boundaries, filler words, and disfluencies, referred to as structural metadata. We describe a metadata detection system that combines information from different types of textual knowledge sources with information from a prosodic classifier. We investigate maximum entropy and conditional random field models, as well as the predominant hidden Markov model (HMM) approach, and find that discriminative models generally outperform generative models. We report system performance on both broadcast news and conversational telephone speech tasks, illustrating significant performance differences across tasks and as a function of recognizer performance. The results represent the state of the art, as assessed in the NIST RT-04F evaluation.
机译:有效的人工和自动语音处理要求恢复的不仅仅是单词。它还涉及恢复现象,例如句子边界,填充词和流离失所现象,称为结构元数据。我们描述了一种元数据检测系统,该系统将来自不同类型的文本知识源的信息与来自韵律分类器的信息相结合。我们研究了最大熵和条件随机场模型,以及主要的隐马尔可夫模型(HMM)方法,发现判别模型通常胜过生成模型。我们报告广播新闻和对话电话语音任务的系统性能,说明各个任务之间的显着性能差异以及识别器性能的影响。结果代表了最新技术,如NIST RT-04F评估所评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号