首页> 外文期刊>IEEE transactions on audio, speech and language processing >Musical instrument recognition by pairwise classification strategies
【24h】

Musical instrument recognition by pairwise classification strategies

机译:配对分类策略的乐器识别

获取原文
获取原文并翻译 | 示例

摘要

Musical instrument recognition is an important aspect of music information retrieval. In this paper, statistical pattern recognition techniques are utilized to tackle the problem in the context of solo musical phrases. Ten instrument classes from different instrument families are considered. A large sound database is collected from excerpts of musical phrases acquired from commercial recordings translating different instrument instances, performers, and recording conditions. More than 150 signal processing features are studied including new descriptors. Two feature selection techniques, inertia ratio maximization with feature space projection and genetic algorithms are considered in a class pairwise manner whereby the most relevant features are fetched for each instrument pair. For the classification task, experimental results are provided using Gaussian mixture models (GMMs) and support vector machines (SVMs). It is shown that higher recognition rates can be reached with pairwise optimized subsets of features in association with SVM classification using a radial basis function kernel.
机译:乐器识别是音乐信息检索的重要方面。在本文中,利用统计模式识别技术来解决音乐短语独奏的问题。考虑了来自不同乐器系列的十种乐器类别。大型声音数据库是从商业录音中摘录的音乐短语摘录中收集来的,这些录音翻译了不同的乐器实例,表演者和录音条件。研究了超过150种信号处理功能,包括新的描述符。两种特征选择技术,即具有特征空间投影的惯性比最大化和遗传算法,以成对成对的方式进行考虑,从而为每个仪器对获取最相关的特征。对于分类任务,使用高斯混合模型(GMM)和支持向量机(SVM)提供实验结果。结果表明,使用径向基函数核,与SVM分类相关的特征的成对优化子集可以达到更高的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号