首页> 外文期刊>IEEE transactions on audio, speech and language processing >A Cohort-Based Speaker Model Synthesis for Mismatched Channels in Speaker Verification
【24h】

A Cohort-Based Speaker Model Synthesis for Mismatched Channels in Speaker Verification

机译:基于队列的说话人验证中不匹配通道的说话人模型综合

获取原文
获取原文并翻译 | 示例

摘要

Mismatch between enrollment and test data is one of the top performance degrading factors in speaker recognition applications. This mismatch is particularly true over public telephone networks, where input speech data is collected over different handsets and transmitted over different channels from one trial to the next. In this paper, a cohort-based speaker model synthesis (SMS) algorithm, designed for synthesizing robust speaker models without requiring channel-specific enrollment data, is proposed. This algorithm utilizes a priori knowledge of channels extracted from speaker-specific cohort sets to synthesize such speaker models. The cohort selection in the proposed new SMS can be either speaker-specific or Gaussian component based. Results on the China Criminal Police College (CCPC) speaker recognition corpus, which contains utterances from both landline and mobile channel, show the new algorithms yield significant speaker verification performance improvement over Htnorm and universal background model (UBM)-based speaker model synthesis.
机译:注册和测试数据之间的不匹配是说话人识别应用程序中最严重的性能下降因素之一。这种失配在公用电话网络上尤其如此,在公用电话网络上,输入的语音数据是通过不同的手机收集的,并通过不同的通道从一个试验传送到下一个试验。本文提出了一种基于队列的说话人模型合成(SMS)算法,该算法旨在用于合成鲁棒的说话人模型而无需特定于频道的注册数据。该算法利用从说话者特定队列集合中提取的声道的先验知识来合成这种说话者模型。建议的新SMS中的同类群组选择可以是特定于说话者的,也可以是基于高斯分量的。中国刑警学院(CCPC)说话人识别语料库的结果包含固定电话和移动渠道的语音,显示出新算法比基于Htnorm和基于通用背景模型(UBM)的说话人模型综合在说话人验证性能上有显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号